Automatic classification of sleep stages based on the time-frequency image of EEG signals

نویسندگان

  • Varun Bajaj
  • Ram Bilas Pachori
چکیده

In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

K-Complex Detection Based on Synchrosqueezing Transform

K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?

Objective: In this research, a new approach termed as “evolutionary-based brain map” is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected fr...

متن کامل

Computer Assisted Automatic Sleep Scoring System Using Relative Wavelet Energy Based Neuro Fuzzy Model

This paper addresses the automated scoring of sleep stages using Electroencephalograph (EEG). The change in the Sleep Stages is accompanied by changes in the frequency spectrum of the EEG signals. A novel method based on Relative Wavelet Energy based Neuro-fuzzy is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of (EEG) using relative wavelet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 112 3  شماره 

صفحات  -

تاریخ انتشار 2013